
Inference of Multi-Class STL Specifications
for Multi-Label Human-Robot Encounters

Alexis Linard, Ilaria Torre, Iolanda Leite and Jana Tumova

Abstract— This paper is interested in formalizing human
trajectories in human-robot encounters. Inspired by robot
navigation tasks in human-crowded environments, we consider
the case where a human and a robot walk towards each
other, and where humans have to avoid colliding with the
incoming robot. Further, humans may describe different be-
haviors, ranging from being in a hurry/minimizing completion
time to maximizing safety. We propose a decision tree-based
algorithm to extract STL formulae from multi-label data.
Our inference algorithm learns STL specifications from data
containing multiple classes, where instances can be labelled
by one or many classes. We base our evaluation on a dataset
of trajectories collected through an online study reproducing
human-robot encounters.

Index Terms— Temporal Logic Inference, Signal Temporal
Logic, Human-Robot Interaction.

I. INTRODUCTION

Social navigation of robots among humans is a research
topic concentrating much interest due to diverse challenges,
such as the prediction of human behavior in crowded social
environments to enable efficient robot navigation, or the
identification of “navigation styles” for a mobile robot in
its surrounding environment [1]. In robot motion planning
and control, desired behavior specifications and preferences
can be expressed in Signal Temporal Logic (STL) [2], a
formalism that can express system properties that include
bounds on time and values of system parameters. STL defines
specifications over multi-dimensional continuous signals and
can, e.g., be used to depict properties of trajectories. Since
STL allows rich expressiveness and resemblance to natural
language [3], it has recently been used in human-robot
interaction applications [4], [5], and human-robot encounters.
Indeed, there is a growing need to depict human-robot in-
teractions through formal and rigorous techniques to provide
guarantees on the functioning of robotic systems, as well as
their interactions with humans and perceived safety [6].

In this paper, we conducted a similar study like the one of
[7], but where human users describe several behaviors while
avoiding a robot driving in a collision course: humans can
be in a hurry (i.e. having to navigate around the robot as
fast as possible), maximizing safety (i.e. having to avoid a
collision at all costs), or with no particular motivation (i.e.
having to navigate around the robot in a reasonable amount

The authors are with the KTH Royal Institute of Technology, SE-100
44, Stockholm, Sweden, with the Division of Robotics, Perception and
Learning and are also affiliated with Digital Futures. This work was sup-
ported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation, the Swedish
Research Council (VR) (project no. 2017-05102), and partially supported
by Sweden’s Innovation Agency (Vinnova) through the TECoSA project.
{linard,ilariat,iolanda,tumova}@kth.se

of time but without safety constraints). However, as human
behavior is hardly predictable and can depict high variability
between two individuals, the “maximizing safety” recorded
trajectories of ones can also be comparable to the “no special
motivation” trajectories of others (both in terms of spatial
and temporal distributions), as different people might have
overlapping definitions of what is “maximizing safety” and
just “taking a normal walk”. Therefore, it can be the case
that trajectories collected during this experiment are at the
same time labelled by one and the other human motivations.

To answer the need of specifying robot’s behaviors through
formal methods, temporal logic inference typically extracts
specifications from observed behaviour, classified as either
satisfying or violating the target specification. STL inference
methods learning both the structure and the parameters of the
specifications are classically supervised learning approaches
based on decision trees [8]. However, only one specific set-
ting has been considered so far: data is separated into positive
(i.e. satisfying the target specification) and negative (i.e.
violating the target specification) trajectories. Our research
question lies in the following: what if the data is not only
labelled by two classes (that is, positive vs. negative), but
by several classes instead (that is, class A, class B, class C,
etc.), and that trajectories can belong to one or more classes
(e.g., trajectory σ satisfies class B and C)?

The contributions of this paper are multi-fold: first, we
propose a multi-class approach for the inference of STL
formulae. Moreover, we consider the case where data can
be labelled with multiple classes. Inspired by the learning
approach of Bombara et al. [8], we developed a decision tree-
based method that tries to best separate the (multi)labelled
signals according to evaluation metrics accounting for the
multi-label classification performance, rather than the infor-
mation gain usually used in binary classification tasks. The
second contribution of this paper is an original on-the-fly
pruning technique of the decision tree. At each iteration
of the construction of the tree’s nodes, the STL formulae
constituting the nodes may have overlapping semantics. To
avoid overlapping STL formulae, we enable the creation of
nodes where the intersection of a new node’s STL formula
with its ancestor nodes’ formulae is empty. Finally, our last
contribution is the application of STL inference to social
navigation: we provide a method learning specifications of
human-robot encounters, taking into account several human
motivations in the same model. In the future, applications
of our learned models to STL-based robot motion planning
will appropriately include human preferences, internal moti-
vations and states, as well as perceived safety.

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)
October 23-27, 2022, Kyoto, Japan

 978-1-6654-7927-1/22/$31.00 ©2022 IEEE 1305

II. RELATED WORK

The use of temporal logics as a tool to specify robotics
tasks in an interpretable way has been recently explored in
the field of human-robot interaction. For instance, Porfirio
et al. use temporal logics to express social norms and
social robot behaviors in human-robot interaction [4], [9], to
specify, verify, and improve the communication modalities
of humans with robots. In a study inspired by the “Game of
Chicken” [7], human users in a simulated environment had to
navigate a space shared with a robot, moving in the direction
of the human and along the same path. To avoid a collision,
users had to deviate from their trajectory. The goal was to
learn probabilistic STL specifications [5] from these human-
robot trajectories to model distributions of human behaviors
when facing the incoming robot.

STL inference techniques that span structure and param-
eter learning comprise techniques building the STL formula
and mining its parameters. For unsupervised learning, ex-
isting works relate the temporal inference process to a one-
class SVM based optimization function [10], [11], grid-based
projection of the signals to infer clusters of signals [12], or
multi-dimensional binary search [13]. Concerning supervised
learning, Nenzi et al. [14] employ an evolutionary algorithm
to learn an STL formula from positive and negative signals.
Linard et al. [15] developed an active learning approach
when no data is available beforehand. In a different fashion,
the authors of [8] proposed both offline and online decision
tree-based methods to learn an STL formula, where the
decision tree represents the STL formula. It consists of
nodes containing an STL sub-formula locally separating data,
where the formula is chosen among a set of STL primitives,
i.e. STL formulae enforcing spatio-temporal constraints on
the trajectories, where spatial and temporal parameters are
optimized to classify instances at a given node appropriately.
The specification for a given class is then obtained by
recursively parsing the tree’s nodes leading to a leaf labelled
by the class. This approach catches our attention: it can
be modified to consider other optimization criteria, such
as multi-label related criteria, and the formalism of single
label leaves can be extended to include multi-labelled leaves.
Recently, some extensions of [8] include boosted decision
tree learning for STL inference [16], or the combination of
decision trees and neural networks [17], but to the best of
our knowledge, none looked into multi-class problems.

III. PRELIMINARIES

Let R and N be the set of real and natural numbers
including zero, respectively. We use a discrete notion of time
throughout this paper, and time intervals are in the form
I = [t1, t2] ⊂ N, t1, t2 ∈ N, t1 ≤ t2. [τ+t1, τ+t2] is denoted
by τ + I , τ ∈ N. An n-dimensional, finite, discrete-time
signal σ is defined as a sequence σ : σ(t0)σ(t1)σ(t2) . . .,
where σ(ti) ∈ Rn is the value of signal σ at time ti ∈ N. The
j-th component of signal value σ(ti) is denoted by σ(ti)

j ,
where j ∈ [1, n]. The set of all signals with values taken
from Rn is denoted by Σ. The syntax of STL is defined as:

ϕ ::= ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 (1)

where ⊤ is the Boolean True constant, π a predicate over
Rn in the form of f(x) ∼ µ, f : Rn → R, µ ∈ R, and ∼∈
{≤, >}; ¬ and ∧ are the Boolean operators for negation and
conjunction, respectively; and UI is the temporal operator
until over bounded interval I . Other Boolean operations
are defined using the conjunction and negation operators to
enable the full expression of propositional logic. Additional
temporal operators eventually and globally are defined as
♢Iϕ ≡ ⊤UIϕ and □Iϕ ≡ ¬♢I¬ϕ, respectively. Further, the
semantics of STL are defined as:

σ(ti) |= π ⇔ f(σ(ti)) ∼ µ
σ(ti) |= ¬ϕ ⇔ ¬(σ(ti) |= ϕ)
σ(ti) |= ϕ1 ∧ ϕ2 ⇔ (σ(ti) |= ϕ1) ∧ (σ(ti) |= ϕ2)
σ(ti) |= ϕ1UIϕ2 ⇔ ∃i′ ∈ t+ I s.t. σ(ti′) |= ϕ2

∧∀i′′ ∈ [t, t′], σ(ti′′) |= ϕ1

Parametric Signal Temporal Logic (PSTL) [18] is an exten-
sion of STL where formulae (time bounds and predicates
parameters) are parameterized. We refer to primitives as
PSTL formulae with parameters Θ. Further, the parameter
space of Θ is a user-given value.

IV. PROBLEM FORMULATION

Our work is motivated by the need of specifying human-
robot encounters in a rigorous way. We aim to find an
STL specification that describes a set of 2-dimensional
trajectories, where multiple classes of human behaviors can
label each trajectory. In this paper, we will consider a 2-
dimensional space (with dimensions x and y) and related
primitives, that describe bounded 2D spatial properties that
have to hold within a given interval:

p1 = ♢[τ1,τ2](α ≤ x ≤ β ∧ γ ≤ y ≤ δ) (2a)
p2 = □[τ1,τ2](α ≤ x ≤ β ∧ γ ≤ y ≤ δ) (2b)
p3 = □[τ1,τ2]¬(α ≤ x ≤ β ∧ γ ≤ y ≤ δ) (2c)

with Θ = {τ1, τ2, α, β, γ, δ} and τ1, τ2, α, β, γ, δ ∈ R.
Intuitively, primitive p1 of (2a) means that the x and y dimen-
sions of the signal have to be comprised between [α, β] and
[γ, δ] respectively, at least once during time interval [τ1, τ2].
Primitive p2 of (2b) means that the x and y dimensions of
the signal have to be comprised between [α, β] and [γ, δ]
respectively, during the entire time interval [τ1, τ2]. Finally,
primitive p3 of (2c) means that the x and y dimensions
of the signal can never be comprised between [α, β] and
[γ, δ] respectively, during the entire time interval [τ1, τ2].
The choice of these primitives is motivated by our case
study: we seek easily interpretable formulae, representing
semantic satisfiability zones of trajectories in the 2D space.
Note that the resulting STL formulae (with set parameters)
are convex. Hence, resulting STL formulae can be seen a
3D convex polytopes (and more exactly 3D cuboids – with
2 dimensions for the spatial dimensions plus 1 for time).
In Sect. V-B, we will define geometrical operations on such
polytopes, standing for the intersection and difference of 2
STL formulae.

1306

Algorithm 1: MULTICLASS STL LEARN(S ,φpath)
Input: S – set of labelled signals
φpath – set of STL formulae on the path to curr. node
P – set of PSTL primitives
stop – stopping criterion
Output: ϕ – an STL formula

1 if stop then return leaf (argmax(σ,C)∈S C)
2 ϕ∗ = argmaxp∗∈P,θ∗∈Θ G(S , p∗(θ∗))
3 S+ ← {(σ,C) ∈ S | σ |= ϕ∗}
4 S− ← {(σ,C) ∈ S | σ ̸|= ϕ∗}
5 node.right ← multiclass STL learn(S+, φ

path ∪ {ϕ∗})
6 node.left ← multiclass STL learn(S−, φ

path ∪ {ϕ∗})
7 return node

In the remainder of the paper, we will consider the set of
parametric primitives P = {p1, p2, p3} as defined in (2a),
(2b) and (2c). Also, we will consider formulae belonging to
the following fragment of STL:

ϕ ::= ⊤ | p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 (3)

where p is an STL formula of the form of one of the
STL formulae in P with defined parameters. We claim that
this fragment is rich enough to capture specifications of
trajectories, by combining conjunctions and disjunctions of
satisfiability zones over time.

We aim to find an STL specification in the form of (3) that
describes a set of 2-dimensional trajectories S discretized by
sampling into discrete-time signals σi(t0)σi(t1)σi(t2) · · · ,
i ∈ {1, . . . , |S |}. We consider the setting where trajectories
can be labelled by 1 to |C| classes where C = {c1, c2 . . .},
|C| ≥ 2, and where C denotes the classes a trajectory can
belong to. We denote by C ⊆ C the labels of a signal.

Problem 1: Given a set of labelled discrete-time signals
S , learn |C| STL formulae ϕc, ∀c ∈ C such that:

∀(σ,C) ∈ S , ∀c ∈ C, σ |= ϕc ∧ ∀c′ ∈ C\C, σ ̸|= ϕc′ (4)
In other words, we want to learn as many sub-formulae as
classes, and that each of the trajectories in the dataset satisfies
the class(es) it belongs to.

V. METHOD

We propose two algorithms to identify STL formulae
describing multi-labelled signals in a multi-class context. The
first algorithm is a modification of state-of-the-art decision
tree-based algorithms that account for optimization criteria
reflecting the multi-label problem (Section V-A). The second
is an extension of the previous that renders more concise STL
formulae to increase the readability and explainability of the
returned specifications (Section V-B).

A. Learning Multiclass STL

Algorithm 1 follows parts of [8] and recursively builds
a tree, given a set of labelled signals S , where each node
is labelled by an STL formula locally separating the data.
It takes as input the set of PSTL primitives P from which
an STL formula is found to classify the data at each node,
and stopping criteria (e.g., a maximum tree depth, maximum

Algorithm 2: MULTICLASS STLDIFF(S , φpath)
Input: S – set of labelled signals
φpath – set of STL formulae on the path to curr. node
P – set of PSTL primitives
stop – stopping criterion
Output: ϕ – an STL formula

1 if stop then return leaf (argmax(σ,C)∈S C)
2 ϕ′ = argmaxp∗∈P,θ∗∈Θ G(S , p∗(θ∗))
// calculates ϕ′ minus all elements in φpath

3 diff ← {ϕ′}
4 for ϕp ∈ φpath do
5 ∆← ∅
6 for ϕdiff ∈ diff do ∆← ∆ ∪ {ϕdiff \ϕp}
7 diff ← ∆

8 ϕ∗ = argmaxϕd∈diff G(S , ϕd)
9 S+ ← {(σ,C) ∈ S | σ |= ϕ∗}

10 S− ← {(σ,C) ∈ S | σ ̸|= ϕ∗}
11 node.right ← multiclass STLDiff (S+, φ

path ∪ {ϕ∗})
12 node.left ← multiclass STLDiff (S−, φ

path ∪ {ϕ∗})
13 return node

runtime, purity inside the set of labelled signals S , etc.).
Unless the stopping criteria are met, the optimal combination
of parameters θ∗ for each primitive p ∈ P is found (line 2)
w.r.t. an optimization criterion G, which is expressed as the
gain expressed in terms on multi-label entropy E:

G(S , ϕ) = E(S)− (E(S+)
|S+|
|S | + E(S−)

|S−|
|S |)

E(S) = −
∑
c∈C

P (c) log(P (c)) + (1− P (c) log(1− P (c)))

where P (c) refers to the frequency of class c in S , S+ =
{σ ∈ S | σ |= ϕ} and S− = {σ ∈ S | σ ̸|= ϕ}.
The optimization problem is solved using particle swarm
optimization [19], [8], as a successful technique to search the
combination of PSTL primitives’ parameters rendering the
highest gain, especially considering the high dimensionality
of our problem (6 variables for the primitives of (2a), (2b)
and (2c)). The choice among all optimized primitives is given
to the primitive with parameters that provide the highest gain.
The node is then labelled by this candidate STL formula ϕ∗.
The next step is to separate the signals in S according to the
candidate STL formula ϕ∗, between signals S+ satisfying ϕ∗

(line 3) and signals S− violating ϕ∗ (line 4). The algorithm
is recursively called on S+ to build the successor right nodes
of the current node (line 5) as well as on S− to build the
successor left nodes (line 6).

Note that the output decision tree can be easily translated
into an STL formula [8, Algorithm 2].

B. STL-difference method

In this section, we explain how we extend Algorithm
1 with on-the-fly pruning of the node’s STL formulae in
order to render concise STL formulae with non-overlapping
semantics. The algorithm as depicted by Algorithm 2 fol-
lows a similar structure except for the optimization step

1307

Algorithm 3: ϕ ∩ ϕ′

Input: ϕ, ϕ′ – STL formulae of the form of (2a),
(2b) or (2c), with set parameters.

Pre-condition: ϕ and ϕ′ both of the same form.
Output: ϕ∩ = ϕ ∩ ϕ′ – the intersection of ϕ and ϕ′.

1 a∩ ← max(a, a′) ; b∩ ← min(b, b′)
2 c∩ ← max(c, c′) ; d∩ ← min(d, d′)
3 t1∩ ← max(t1, t

′
1) ; t2∩ ← min(t2, t

′
2)

// if ϕ and ϕ′ overlap

4 if a∩ < b∩ ∧ c∩ < d∩ ∧ t1∩ < t2∩ then
5 if ϕ and ϕ′ of the form of (2a) then
6 return ♢[t1∩,t2∩](a∩ ≤ x ≤ b∩ ∧ c∩ ≤ y ≤ d∩)

7 if ϕ and ϕ′ of the form of (2b) then
8 return □[t1∩,t2∩](a∩ ≤ x ≤ b∩ ∧ c∩ ≤ y ≤ d∩)

9 if ϕ and ϕ′ of the form of (2c) then
10 return □[t1∩,t2∩]¬(a∩ ≤ x ≤ b∩ ∧ c∩ ≤ y ≤ d∩)

11 return ∅

of the PSTL primitives. We start by finding the optimal
combination of parameters θ∗ for each primitive p ∈ P
according to optimization criterion G (line 2). We gather ϕ′

as the best candidate primitive with values. The following is
unprecedented and is one of the contributions of this paper.

Indeed, candidate ϕ′ does not account for possible seman-
tic overlappings between ϕ′ and predecessor STL formulae
in φpath already discovered in the decision tree. Take, as
an example, two STL formulae φ′ = □[15,30](0 ≤ x ≤ 2)
and φp = □[10,20](1 ≤ x ≤ 3), where φp is one of the
STL formulae already found in the decision tree. One sees
that, semantically, φ′ overlaps with φp for times [15, 20] and
1 ≤ x ≤ 2. In this case, since φp is already discovered
and present in the decision tree structure on the one hand,
and φ′ optimized for the current node, the “gain” brought
by φ′ can only be obtained in the part of φ′ that does not
overlap with φp. Therefore, we claim that the only valuable
information laying in φ′ is, in fact, in the difference between
φp and φ′, that is, in φ′\φp, either □[15,20](0 ≤ x ≤ 1) or
□[20,30](0 ≤ x ≤ 2).

Therefore, once the best candidate primitive and parame-
ters are optimized into a candidate STL formula ϕ′ (line 2),
we calculate the difference between ϕ′ and all STL formulae
in φpath already in the decision tree structure (lines 3–7).
In case ϕ′ and an STL formula ϕp in φpath overlap (i.e.,
ϕp ∩ ϕ′ ̸= ∅ – see Algorithm 3), we calculate ϕ′\ϕp and do
this repeatedly on all STL formulae in φpath . This operation
is provided by Algorithm 4, which is a geometrical-based
calculation of the difference between 2 STL formulae. It
takes as input 2 formulae of the same structure (either
(2a), (2b) or (2c)) to preserve semantic coherence), and
conceptually transform these into convex 3D polytopes. The
algorithm returns a set of convex polytopes describing the
difference between 2 formulae. Note that each element in the
difference (by construction of Algorithm 4, a cuboid) can be
converted into an STL formula. The result is then processed
in a second optimization process (line 8), where the gain of

Algorithm 4: ϕ \ ϕ′
Input: ϕ, ϕ′ – STL formulae of the form of (2a),

(2b) or (2c), with set parameters.
Pre-condition: ϕ and ϕ′ both of the same form.
Output: diff – set of STL formulae for ϕ \ ϕ′.

1 if ϕ ∩ ϕ′ = ∅ then return ϕ
2 diff ← ∅
3 xs ← {a, b} ; ys ← {c, d} ; ts ← {t1, t2}
4 if a < a′ < b then xs ← xs ∪ {a′}
5 if a < b′ < b then xs ← xs ∪ {b′}
6 if c < c′ < d then ys ← ys ∪ {c′}
7 if c < d′ < d then ys ← ys ∪ {d′}
8 if t1 < t′1 < t2 then ts ← ts ∪ {t′1}
9 if t1 < t′2 < t2 then ts ← ts ∪ {t′2}

10 for (x∗1, x
∗
2), (y

∗
1 , y
∗
2), (t

∗
1, t
∗
2) ∈

pairwise(xs)× pairwise(ys)× pairwise(ts) do
11 if ϕ and ϕ′ of the form of (2a) then
12 diff ← diff ∪{♢[t∗1 ,t

∗
2]
(x∗

1 ≤ x ≤ x∗
2∧y∗1 ≤ y ≤ y∗2)}

13 if ϕ and ϕ′ of the form of (2b) then
14 diff ← diff ∪{□[t∗1, t

∗
2](x

∗
1 ≤ x ≤ x∗

2∧y∗1 ≤ y ≤ y∗2)}

15 if ϕ and ϕ′ of the form of (2c) then
16 diff ← diff ∪{□[t∗1 , t

∗
2]¬(x

∗
1 ≤ x ≤ x∗

2 ∧y∗
1 ≤ y ≤ y∗

2)}

17 return diff

each element in the difference is evaluated. Finally, the best
element ϕ∗ is extracted and chosen to label the node. The
remainder of the algorithm is similar to the baseline, except
for the recursive call that appends ϕ∗ to φpath (line 11– 12).

VI. EXPERIMENTS

We implemented and tested our learning algorithm in
Python 3.81. We ran our experiments on an Intel i7-8665U
CPU and 32GB RAM. We ran experiments on both a
synthetic dataset and trajectories where, in a simulation,
participants had to deviate their path to avoid collision with
an incoming robot. We also compare the predictive power of
our approaches to classical neural networks.

A. Synthetic Dataset

In this experiment, we generated 500 trajectories from 7
STL specifications. The purpose of this experiment is to see,
whether in a controlled environment (we know which STL
specification trajectories were generated from), we could
learn equivalently good STL formulae to correctly classify
the trajectories. We considered the following STL formulae:

ϕ1 = □[0,100]¬(−2 ≤ x ≤ 2 ∧ −1 ≤ y ≤ 1) (5a)
ϕ2 = □[10,15](−6 ≤ x ≤ −2 ∧ −4 ≤ y ≤ −3) (5b)
ϕ3 = □[25,30](6 ≤ x ≤ 8 ∧ −6 ≤ y ≤ −2) (5c)
ϕ4 = ♢[40,80](−6 ≤ x ≤ −4 ∧ 3 ≤ y ≤ 4) (5d)
ϕ5 = ♢[50,70](1 ≤ x ≤ 4 ∧ 0 ≤ y ≤ 4) (5e)
ϕ6 = □[85,90](−3 ≤ x ≤ −1 ∧ 5 ≤ y ≤ 8) (5f)
ϕ7 = □[95,100](1 ≤ x ≤ 3 ∧ 5 ≤ y ≤ 8) (5g)

1308

(a) Safety motivation. (b) Taking a “normal” walk motivation. (c) Speed motivation.

Fig. 1: Payoff matrices and task description as displayed to the MTurk participants, for the motivations they had to describe.

Further, we generated trajectories given 3 classes:
c1 = ϕ1 ∧ ϕ2 ∧ ϕ6 (6a)
c2 = ϕ1 ∧ ϕ3 ∧ ϕ4 ∧ ϕ7 (6b)
c3 = ϕ2 ∧ ϕ5 ∧ ϕ7 (6c)

Since we consider the multi-class and multi-label case,
trajectories could be labelled as {c1}, {c2}, {c3}, {c1, c2},
{c1, c3}, {c2, c3} and {c1, c2, c3}. We generated trajectories
from specifications of different (combinations of) classes
using an MILP approach [20] and the Gurobi optimizer.
We generated 100 trajectories for each of the classes {c1},
{c2} and {c3}, and 50 trajectories for each of the remaining
classes {c1, c2}, {c1, c3}, {c2, c3} and {c1, c2, c3}.

TABLE I: Cross-validation results (average of the 5 folds)
for the synthetic data, and for our multi-class (dt) and STL-
difference (dt∆) methods compared to a classical neural
networks approach (nn).

H A time (s)
nn dt dt∆ nn dt dt∆ nn dt dt∆

0.001 0.001 0.000 0.999 0.998 1.000 65 174 465

We evaluated our method over these classes by a stratified
shuffle split cross-validation (with five stratified randomized
folds – made so that we preserve the percentage of trajec-
tories in the data, for each class) and could get the results
presented in Table I, where H represents the results in terms
of hamming loss (7), and A the results in terms of example
accuracy (8):

H(S) =
1

|S ||C|
∑
σ∈S

∑
c∈C

[I(lcσ ̸= l̂cσ)] (7)

where lcσ is the true label of signal σ for class c, l̂cσ is the
predicted label of signal σ for class c. In other words, in
the case of multilabel classification, H is the percentage of
incorrectly predicted labels to the total number of labels.

A(S) =
1

|S |
∑
σ∈S

|lσ ∧ l̂σ|
|lσ ∨ l̂σ|

(8)

where lσ denotes the true labels of signal σ and l̂σ the
predicted labels of signal σ. In other words, A is the

1Software, data and learned STL specifications available at
https://github.com/KTH-RPL-Planiacs/stl multiclass

proportion of correctly predicted labels to the total number
of labels. For comparison purposes of the predictive power
of our decision-tree based STL formulae, we also trained on
the multi-label trajectories and used the Keras deep learning
Python library, a multi-layer perceptron model taking as
input the trajectories and providing as output the probability
of membership for each class of the trajectories.

B. Human-robot Encounters

In this experiment, we collected human trajectories where,
in a simulation, participants played a game where they had to
reach a target zone while navigating around a robot moving
towards them. We designed three different ‘motivations’: 1.
“carrying something fragile” 2. “taking a walk” and 3. “in
a hurry”, each linked to a different payoff matrix based on
the game-theoretic Game of Chicken (Fig. 1). Each of these
makes for three different trajectory classes that we denote f ,
w and h. Participants completed 18 trials. For each trial,
they were told what their motivation was, and what the

(a) Participant’s starting point. (b) Participant deviating.

(c) Collision. (d) Participant’s reward.

Fig. 2: Screenshots from the experiment: robot’s and partic-
ipant’s avatars walking towards each other.

1309

robot’s motivation was. The three human motivation blocks
were counterbalanced across participants, and the robot’s
motivations were randomised within these blocks, so that
each participant played the same number of combinations of
own and robot motivations.

At each trial, participants walked towards a goal, rep-
resented by a red flag, by means of an avatar (Fig. 2).
Participants could use the 4 keyboard arrows to start moving
and accelerate the speed of the avatar, to decelerate and to
deviate the avatar’s trajectory to the left or to the right.
In order to reach the goal, they had to navigate around a
virtual robot. Specifically, we used a 3D model of Softbank
Robotics’s Pepper, a widely-used social robot. Since the
human and robot avatars start from a large distance from
each other, we added a zoomed-in view of the robot so that
participants had enough time to see the robot before starting
any movement. The game was developed in Unity version
2019.4.16f1 and exported to WebGL. Screenshots from the
game are shown in Fig. 2. We recruited 50 participants (30
males, 20 females, median age 34 years old). Of these, 15 re-
ported having interacted with a robot before, and 9 reported
having played the Game of Chicken before. The experiment
was conducted on Amazon Mechanical Turk (AMT) and
lasted approximately 10 minutes. Participants were paid a
base fee plus an additional reward based on how many points
they earned in the experiment.

We collected a total of 900 trajectories (50 participants
× 6 trials × 3 motivations) recorded with a frequency of
10 Hz, i.e. time steps of 100ms. The initial x/y-position of
the participants was set in the robot’s referential, that is,
the robot’s coordinates are at all times (0,0). In order to
retain trajectories of participants who adopted homogeneous
behaviors, we filtered out outliers as follows:

1) the trajectories where participants deviated too much
to the left or to the right. The average of the absolute
value of x positions was 1.82, with a standard deviation
of 1.67. We filtered out trajectories containing at least
one data point with absolute value of x greater than
1.82 + 2× 1.67 = 5.16.

2) the trajectories where participants completed the task
too slowly. The minimum completion was done in 66
time steps, the maximum in 237 time steps, with an
average of 91 and a standard deviation of 25.19. We

Algorithm 5: MULTILABEL TRAJECTORIES(S)
Input: S – set of single-label signals (σ, c)
η – Euclidean distance threshold
Output: S ′ – set of multi-label signals (σ, {c1 . . .})

1 S ′ ← ∅
2 for (σ, c) ∈ S do
3 labels ← {c}

// d : Euclidean distance function

4 if ∃(σ′, c′) ∈ S \{σ} s.t . ∀t, d(σ(t), σ′(t)) < η
then labels ← labels ∪ {c′}

5 S ′ ← S ′ ∪ {(σ, labels)}
6 return S ′

removed trajectories completed with a number of time
steps greater than ⌊91 + 2× 25.19⌋ = 141.

3) the trajectories where participants collided with the
robot, as a 4th class of trajectories col.

As a result, we used 842 trajectories, which we refer to as
S . The set of classes is denoted by C = {f, w, h, col}. Since
participants may have different conceptions and descriptions
of the different behaviors, we notice some overlaps in the tra-
jectories they depict. Indeed, some participant’s trajectories
for the “carrying something fragile” behavior might overlap
the behavior of participants “taking a normal walk”. There-
fore, we associate these multiple labels to such trajectories
(see Algorithm 5). The distribution of the trajectories is as
follows: {f} = 168, {w} = 180, {h} = 146, {f, w} = 7,
{f, h} = 23, {w, h} = 21, {f, w, h} = 98 and {col} = 199.

TABLE II: Cross-validation results of our baseline (dt) and
STL-difference (dt∆) methods compared to a classical neural
networks approach (nn), for the user study data, and a max
tree height of 5.

fold H A time (s)
nn dt dt∆ nn dt dt∆ nn dt dt∆

1 0.280 0.269 0.231 0.346 0.489 0.548 83 1853 2585
2 0.297 0.249 0.215 0.272 0.528 0.591 92 1935 2689
3 0.306 0.223 0.237 0.094 0.577 0.548 155 2019 2539
4 0.287 0.203 0.232 0.220 0.634 0.559 160 2139 2846
5 0.327 0.219 0.219 0.002 0.582 0.588 120 1905 2702

0.299 0.233 0.227 0.187 0.562 0.567 122 1970 2672

TABLE III: Cross-validation results of our baseline (dt) and
STL-difference (dt∆) methods compared to a classical neural
networks approach (nn), for the user study data, and a max
tree height of 10.

fold H A time (s)
nn dt dt∆ nn dt dt∆ nn dt dt∆

1 0.280 0.244 0.286 0.346 0.533 0.472 83 3750 2250
2 0.297 0.215 0.249 0.272 0.590 0.529 92 3764 4394
3 0.306 0.249 0.237 0.094 0.532 0.557 155 3656 4289
4 0.287 0.243 0.213 0.220 0.539 0.592 160 3654 3514
5 0.327 0.225 0.207 0.002 0.567 0.605 120 3493 4210

0.299 0.235 0.238 0.187 0.552 0.551 122 3663 3731

{h} {w
}
{w
, h
} {f} {f,

h}
{f,
w
}

{f,
w
, h
}
{co
l}

Predicted

{h}

{w
}

{w
, h
}

{f}

{f,
h}

{f,
w
}

{f,
w
, h
}

{co
l}

A
ct

ua
l

69 57 0 20 0 0 0 0

0 160 1 19 0 0 0 0

0 11 7 3 0 0 0 0

1 94 0 67 6 0 0 0

0 0 0 10 13 0 0 0

0 2 0 3 0 2 0 0

0 3 0 12 3 0 80 0

0 1 0 0 0 0 0 198

0

25

50

75

100

125

150

175

(a) mutli-class method.

{h} {w
}
{w
, h
} {f} {f,

h}
{f,
w
}

{f,
w
, h
}
{co
l}

Predicted

{h}

{w
}

{w
, h
}

{f}

{f,
h}

{f,
w
}

{f,
w
, h
}

{co
l}

A
ct

ua
l

76 60 2 6 0 0 2 0

2 165 0 13 0 0 0 0

1 10 9 0 0 0 1 0

4 86 0 77 0 0 1 0

1 3 0 5 11 0 3 0

0 2 0 3 0 2 0 0

1 5 0 0 0 0 92 0

1 0 0 0 0 0 0 198

0

25

50

75

100

125

150

175

(b) STL-difference method.

Fig. 3: Confusion matrices of the different classes of the user
study, for the specifications learned on the entire data.

We evaluated our methods over the user study trajectories
following the same procedure as in Sect. VI-A, and could get
the results presented in Tables II and and III (maximum tree
heights of 5 and 10, respectively), where H represents the

1310

results in terms of hamming loss, and A the results in terms
of example accuracy. The purpose of varying the maximum
tree height is to measure the influence of the size of rendered
specifications on the predictive power of the models. In other
words, Tables II and III show the trade-off between predictive
power and interpretability (since a smaller specification is
rather easier to interpret). The confusion matrices of the
different classes of the user study, for specifications learned
over the entire data, are displayed in Fig. 3. Rows represent
the trajectories for the true sets of labels, while columns
represent the trajectories in the predicted sets of labels.

C. Discussion

Considering the experiment with the synthetic dataset,
we can observe that we perform nearly exact classification
of the trajectories in the multi-label context. Further, the
depth of the decision trees obtained remains small (h =
3), which allows us to render interpretable formulae as
a result (for access and visualization of the models we
learned, we refer the reader to our GitHub repository1). The
results we obtained for the user study data do not reach
exact identification of the STL formulae: this is due to the
less “separable” problem at hand: indeed, some trajectories
for one (pair of) user motivations are very close to other
trajectories for other (pairs of) motivations. Also, a close
look at the confusion matrices shows that most of the errors
made are missing one of the labels in the prediction. We
claim that finding at least one or 2 out of the 3 labels
is already a fair outcome for our methods. Overall, our
methods also perform better than classical neural networks
designed to be trained on the multi-label case. Considering
the STL-difference method, we can see that our extension of
the multi-class STL learning algorithm renders semantically
more interpretable specifications. Also, one of the pruning’s
side effects is that the learned specifications are less prone
to overfitting, which explains why we obtain better cross-
validation results. Finally, the primitives we work with are
easily interpretable: they consist of 2D spatial specifications
with time bounds, which can be well projected onto a map
for visualization. Also, note that our work is extensible
to richer fragments of STL, or the first-level primitives as
defined by [8]: Algorithm 1 would require no modification,
while Algorithm 2 would require to set finite bounds on
the spatio-temporal space to calculate the difference between
existing STL formulae in the decision-tree and a candidate
STL formulae.

VII. CONCLUSION

We developed a technique to infer STL formulae from
data labelled with multiple classes. We collected data in a
simulation that places human users in a virtual environment
with a robot and where users described different behaviors
due to different goals. From the trajectories recorded from
the study, we learned specifications of social navigation given
different human internal states. The specifications learned per
human preferences will, in the future, enable us to generate
robot trajectories depending on human preferences or wishes,
and perceived safety. As future work, we will look into

the inclusion of black-box models (e.g., neural networks) to
improve the learning of STL formulae from data, as well
as the development of path planning techniques given our
multi-class STL model.

REFERENCES

[1] K. Charalampous, I. Kostavelis, and A. Gasteratos, “Recent trends in
social aware robot navigation: A survey,” Robotics and Autonomous
Systems, vol. 93, pp. 85–104, 2017.

[2] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[3] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2005, pp. 2020–2025.

[4] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring
and verifying human-robot interactions,” in Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology,
2018, pp. 75–86.

[5] A. Linard, I. Torre, A. Steen, I. Leite, and J. Tumova, “Formalizing
trajectories in human-robot encounters via probabilistic stl inference,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021.

[6] H. Kress-Gazit, K. Eder, G. Hoffman, H. Admoni, B. Argall, R. Ehlers,
C. Heckman, N. Jansen, R. Knepper, J. Křetı́nskỳ, et al., “Formalizing
and guaranteeing human-robot interaction,” Communications of the
ACM, vol. 64, no. 9, pp. 78–84, 2021.

[7] I. Torre, A. Linard, A. Steen, J. Tumová, and I. Leite, “Should robots
chicken? how anthropomorphism and perceived autonomy influence
trajectories in a game-theoretic problem,” in Proceedings of the 2021
ACM/IEEE International Conference on Human-Robot Interaction,
ser. HRI ’21, 2021, p. 370–379.

[8] G. Bombara and C. Belta, “Offline and online learning of signal
temporal logic formulae using decision trees,” ACM Trans. Cyber-
Phys. Syst., vol. 5, no. 3, mar 2021.

[9] D. Porfirio, A. Sauppe, A. Albarghouthi, and B. Mutlu, “Transforming
robot programs based on social context,” in Proceedings of the 2020
CHI conference on human factors in computing systems, 2020.

[10] A. Jones, Z. Kong, and C. Belta, “Anomaly detection in cyber-physical
systems: A formal methods approach,” in 53rd Conference on Decision
and Control (CDC). IEEE, 2014, pp. 848–853.

[11] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and C. Belta,
“Temporal logic inference for classification and prediction from data,”
in Proceedings of the 17th International conference on Hybrid sys-
tems: computation and control (HSCC). ACM, 2014, pp. 273–282.

[12] P. Vaidyanathan, R. Ivison, G. Bombara, N. A. DeLateur, R. Weiss,
D. Densmore, and C. Belta, “Grid-based temporal logic inference,”
in 56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 5354–5359.

[13] M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia,
“Logical clustering and learning for time-series data,” in International
Conference on Computer Aided Verification, 2017, pp. 305–325.

[14] L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, “A robust
genetic algorithm for learning temporal specifications from data,”
in International Conference on Quantitative Evaluation of Systems.
Springer, 2018, pp. 323–338.

[15] A. Linard and J. Tumova, “Active learning of signal temporal logic
specifications,” in 2020 IEEE 16th International Conference on Au-
tomation Science and Engineering (CASE). IEEE, 2020, pp. 779–785.

[16] E. Aasi, C. I. Vasile, M. Bahreinian, and C. Belta, “Inferring temporal
logic properties from data using boosted decision trees,” arXiv preprint
arXiv:2105.11508, 2021.

[17] E. Aasi, M. Cai, C. I. Vasile, and C. Belta, “Time-incremental learning
from data using temporal logics,” preprint arXiv:2112.14300, 2021.

[18] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifi-
cation of temporal properties,” in International Conference on Runtime
Verification. Springer, 2011, pp. 147–160.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of ICNN’95-international conference on neural networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[20] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd Conference on Decision and
Control (CDC). IEEE, 2014, pp. 81–87.

1311

